Sampling tissue volumes using frequency-domain photon migration.
نویسندگان
چکیده
We demonstrate the use of Monte Carlo simulations to generate photon scattering density functions (PSDFs) that represent the tissue volume sampled by steady-state and frequency-domain photon migration. We use these results to illustrate how scaling laws can be developed to determine the mean sampling depth of the multiply scattered photons detected by photon migration methods that remain valid outside the bounds of the standard diffusion approximation, i.e., at small source-detector separations and in media where the optical absorption is significant relative to scattering. Using both the PSDF computation and the newly formulated scaling laws, we focus on a comprehensive description of the effects of source modulation frequency, optical absorption, and source-detector separation on the depth of the sampled tissue volume as well as the sensitivity of frequency-domain photon migration measurements to the presence of a localized absorption heterogeneity.
منابع مشابه
Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration.
A multiwavelength, high bandwidth (1 GHz) frequency-domain photon migration (FDPM) instrument has been developed for quantitative, non-invasive measurements of tissue optical and physiological properties. The instrument produces 300 kHz to 1 GHz photon density waves (PDWs) in optically turbid media using a network analyser, an avalanche photodiode detector and four amplitude-modulated diode las...
متن کاملThe Study of Variation of Photon Intensity Inside Biological Phantom by Green Theorem
The Image reconstruction is an important problem in optical tomography. The process of the image processing requires the study of photon migration in biological tissue. There are several approaches to study and simulate propagation of photons in biological tissues. These approaches are categorized into stochastic and analytical groups. The Monte Carlo method as a stochastic method is widely use...
متن کاملLow-cost frequency-domain photon migration instrument for tissue spectroscopy, oximetry, and imaging
Britton Chance University of Pennsylvania Department of Biochemistry and Biophysics Philadelphia, Pennsylvania 19104 E-mail: [email protected] Abstract. We described a low-cost, frequency-domain photon migration spectroscopy instrument by using in-phase and quadrature demodulation technique in a 140-MHz homodyne system. A time constant of 1 ms was obtained. A frequency-division multiple...
متن کاملPortable, high-bandwidth frequency-domain photon migration instrument for tissue spectroscopy.
We describe a novel frequency-domain photon migration instrument employing direct diode laser modulation and avalanche photodiode detection, which is capable of noninvasively determinating the optical properties of biological tissues in near real time. An infinite medium diffusion model was used to extract absorption and transport scattering coefficients from 300-kHz to 800-MHz photon-density w...
متن کاملBiomedical optical tomography using dynamic parameterization and bayesian conditioning on photon migration measurements.
Stochastic reconstruction techniques are developed for mapping the interior optical properties of tissues from exterior frequency-domain photon migration measurements at the air-tissue interface. Parameter fields of absorption cross section, fluorescence lifetime, and quantum efficiency are accurately reconstructed from simulated noisy measurements of phase shift and amplitude modulation by use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 69 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2004